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Abstract

The continuous double-auction (cda) is a powerful market mechanism, noted for its speed and
efficiency [22], and is the mechanism underlying the organization of open-outcry ‘trading pits’ at
major international derivatives markets. In previous publications, Cliff & Bruten demonstrated that
software ‘trading agents’ need more than zero intelligence to give human-like cda price-equilibration
behavior [10, 13]. Cliff and Bruten presented results from experiments with simple adaptive trading
agents in cda markets [10, 12] and in one-sided “retail market” auctions [15]. These agents give very
good performance on standard measures of trading activity such as allocative efficiency, Smith’s [42]
‘α’ measure of price convergence, and profit dispersion, but only when parameters governing the
adaptation mechanism are set to appropriate values. Determining good or optimal combinations
of parameters by hand is possible, but can be labor-intensive. This paper1 presents the first results
from using a genetic algorithm to optimize all the real-valued parameters governing adaptation
in the trading agents. It is shown that a simple genetic algorithm (GA), in combination with
an appropriate evaluation function, can deliver good parameter settings from random initial-value
conditions. The evolutionary trajectories of the population through the 8-dimensional parameter
space are illustrated, and the use of the GA to identify parameters that are redundant (or even
‘harmful’) is discussed.

1 Background

The classical theoretical picture of equilibration (price formation at a competitive equilibrium)
dictates that the number of trading agents (buyers and sellers) in the market is practically infinite,
or very large at least. Yet, in a series of experiments commencing in the late 1950’s, Smith (e.g. [42])
demonstrated that markets consisting of surprisingly small numbers of human traders could rapidly
converge on the theoretical equilibrium price given by the intersection of the market’s supply and
demand curves. Smith’s experimental results have been widely replicated and extended, and it
is now generally accepted that stable equilibria can be reached with fewer than twenty traders.

∗Current address: Digital Media Systems Dept, PSSL, Hewlett-Packard Labs, Bristol BS34 8QZ, UK.
cliffd@hplb.hpl.hp.com.

1This paper is revised and significantly extended from [11].
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In Smith’s experiments, human subjects were told to be either buyers or sellers. Each seller was
given a number of units of an arbitrary commodity to sell and each buyer was given the right to
buy some units, and some currency. For each unit, each trader was given a limit price that was
private (known only to that trader). A buyer couldn’t pay more than her limit price for a unit of
the commodity, and a seller couldn’t sell a unit for less than her limit price. Typically, different
traders had different limit prices: the distribution of limit prices determined the market supply and
demand curves. In each experiment, time was divided into discrete periods known as ‘days’: most
experiments consisted of 5 to 10 consecutive ‘days’. At the start of each day, the rights to buy
or sell units of commodity were distributed between the subjects. Each day ended either when no
more traders were willing or able to trade, or when a pre-set time-limit expired (typically a ‘day’
lasted 5–10 minutes). During each day, the traders operated within a specific market structure: in
many of Smith’s experiments, the cda was used, but he also experimented with one-sided auction
‘retail’ markets (where only sellers quote prices). In the early experiments, the traders operated
in the experimental equivalent of an open-outcry ‘trading pit’, but Smith subsequently developed
methods where the traders communicated with each other via a network of computer terminals.
Smith’s work helped establish the field now known as Experimental Economics [43, 19, 31]. The
intention of the work described here is to develop artificially-intelligent software trading-agents
with the bargaining capabilities necessary for small groups of traders to show price-equilibration in
market scenarios similar to those studied by Smith.

Although it may seem intuitively obvious that some form of ‘intelligence’ or adaptation is
necessary in trader-agents, Gode & Sunder [23] presented results that appear to indicate that
zero-intelligence agents can exhibit human-like behavior in cda markets. Gode & Sunder’s zero-
intelligence trading agents simply generated random prices for bids or offers, subject to the con-
straint that they could not enter into loss-making deals. Gode & Sunder’s work has proven
influential.2 However, Cliff & Bruten [10, 13] demonstrated that Gode & Sunder’s result only
holds in very specific circumstances and that, in general, some ‘intelligence’ in the form of adaptiv-
ity or sensitivity to previous and current events in the market is necessary. Consequently, Cliff &
Bruten [10, 12] described simple trading agents with adaptive capabilities. They refer to these as
“zero-intelligence-plus” (zip) traders. The zip traders’ basic adaptive mechanisms are elementary
machine-learning techniques.

The emphasis in Cliff & Bruten’s work was on creating simple autonomous software agents
for bargaining in market-based environments. This emphasis on simplicity came not only from a
desire for computational efficiency (important if hundreds or thousands of such agents are active
on a network), but also from a desire to speculatively sketch the minimum mechanistic complexity
necessary and sufficient for explaining human bargaining behaviors in specific market environments.
There are at least three significant potential applications of bargaining agents such as zip traders:
internet-based trading and e-commerce; economic modeling; and market-based control (e.g. [9])
— these issues are discussed further by Cliff [10], who also gives a complete description of the
design of zip trading agents, shows results from many experiments in different styles of market
environment, and includes all the C source-code for the system. Two recent theses have further
explored the use of zip traders. The first, by van Montfort [48], discusses experiences in using these
zip traders in markets where there may be potentially hundreds or thousands of agents, where there

2For example, the following 30 texts approvingly cite Gode & Sunder’s 1993 JPE paper on ZI traders: [3, pp.230–
231], [5, pp.253, 258], [21, p.19], [22, p.xxiii], [32, pp.292, 294], [40, pp.160–161, 175], [19, p.132], [33, p.2], [26,
p.1082], [44, p.310], [1, p.186], [4, p.674] [27, p.228], [28, p.370], [30, pp.570, 580], [34, p.226], [38, pp.52–55, 80–81],
[46, p.475], [6, pp.1318, 1333], [17, p.678], [18, p.383], [29, p.276], [36, p.266], [41, p.32], [45, p.2], [47, p.461], [7,
p.320], [8, pp.183–184], [20, p.623], and [24, pp.604–605].
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may be spatial structure or segmentation in the market (e.g., the traders are distributed over some
space, and each trader can only transact with other traders in its local neighborhood), and where
agents are permitted to engage in arbitrage. In the second thesis, by van Tol [49], the zip-trader
specification was extended to a generalized form capable of dealing with variations in the amount
of market information (i.e., the number of quote-prices) employed by the trader’s pricing strategy.

The present paper describes the use of a genetic algorithm to optimize the values of real-
valued numeric parameters governing adaptation or learning in zip traders. Before these genetic
optimization experiments can be described, it is necessary to introduce the zip trading strategies
and adaptation mechanisms in more detail.

2 ZIP Traders

Each zip trader operates by maintaining a profit margin that it uses for calculating the price it
‘quotes’ (offers or bids) in the market: the profit margin determines the difference between the price
the agent quotes and that agent’s limit price for the unit of commodity the agent is trading. The
‘aim’ of each zip agent is to maximize profit generated by trading in the market. Thus, the problem
of designing a trading agent can be considered as a combination of two issues: the qualitative issue
of deciding when to increase or decrease the profit margin, and the quantitative issue of deciding
by how much the margin should be altered.

For reasons discussed in detail by Cliff [10], each zip trader makes the qualitative decision of
when to alter its margin on the basis of four factors. The first factor is whether the agent is active
in the market: agents are active until they have sold or bought their full entitlement of units of the
commodity. The remaining three factors are data concerning the last quote by any agent in the
market, which we refer to as Q. Each zip trader notes whether Q was an offer or a bid, whether
Q was accepted (i.e., led to a transaction) or rejected (ignored by the traders in the market),
and whether Q’s price, q(t), is greater than or less than the price the zip trader would currently
quote. The price a zip trader i would quote at time t is referred to as that trader’s quote-price,
pi(t), which is calculated from i’s limit price λi,j (for i’s jth unit of commodity) and i’s current
profit coefficient µi(t) using pi(t) = λi,j(1 + µi(t)). This implies that a seller’s margin is raised
by increasing µi and lowered by decreasing µi, with the constraint that µi(t) ∈ [0,∞);∀t. The
situation is reversed for buyers: they raise their margin by decreasing µi and lower it by increasing
µi, subject to µi(t) ∈ [−1, 0];∀t. Note that if trader j was responsible for Q then q(t) = pj(t). Also,
note that if Q is accepted at time t then the seller s receives ‘profit’ q(t) − λs,j and the buyer b
receives profit λb,j − q(t), where q(t) is either ps(t) or pb(t).

A zip seller i raises its profit margin whenever Q was accepted and pi(t) ≤ q(t). It lowers its
margin only if it is still active and Q was an offer with pi(t) ≥ q(t), or if Q was a bid that was
accepted and pi(t) ≥ q(t). Similarly, a zip buyer i raises its profit margin whenever Q was accepted
and pi(t) ≥ q(t), and it lowers its margin when it is active and either Q was a rejected bid with
pi(t) ≤ q(t) or Q was an accepted offer with pi(t) ≤ q(t).

The quantitative issue of by how much the profit coefficient µi(t) should be altered is addressed
by using a simple machine-learning rule, Widrow-Hoff with momentum, which also underlies back-
propagation learning in neural networks [39]. Briefly, this adjusts the actual output of a system
toward some target output value, at a speed determined by a learning rate β, and with a simple
‘memory’ or ‘momentum’ parameter γ. In each zip trader the target value τi(t) is a function of
q(t): τi(t) = Ri(t)q(t) +Ai(t) where Ri(t) and Ai(t) are stochastic functions that return uniformly
distributed real values generated from iid distributions for each trader i. The intention is that
Ri is a small relative perturbation of the last quote price (|Ri(t)| 
 1.0;∀i∀t), and Ai is a small
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absolute perturbation (|Ai(t)| 
 0.0;∀i∀t). Using U(cl, cu) to denote a uniform distribution over the
real-valued range [cl, cu], for buyers the Ri values are given by U(1.0−cr , 1.0) and for sellers the Ri

values are given by U(1.0, 1.0+cr). Similarly, the Ai values for buyers are given by U(−ca, 0.0) and
for sellers by U(0.0, ca). Thus, the distributions of the Ri and Ai values for the entire zip-trader
market are determined by the two parameters cr and ca.

Each trader i uses its current value of τi(t) in combination with βi and γi to adjust its profit
coefficient µi(t). The profit-coefficient update rule for trader i is:

µi(t + 1) = (pi(t) + Γi(t))/λi,j − 1

where: Γi(t > 0) = γiΓi(t − 1) + (1 − γi)βi(τi(t) − pi(t)) and Γi(0) = 0 : ∀i. For further details of
how learning is implemented in zip traders, see Cliff & Bruten [10, 14].

Thus, adaptation in each trader i is governed by three real-valued parameters: learning rate
βi, momentum γi, and initial profit coefficient µi(0). Each trader’s values for these parameters
are assigned at initialization, using uniform distributions: for all traders, βi is assigned a value
generated at random from U(βb, βb + β∆); and γi is assigned a value from U(γb, γb + γ∆).3 For
sellers, the initial profit coefficients µi(0) are assigned from U(µb, µh), and for buyers the µi(0)
values are assigned from U(−µh,−µb), where µh = µb + µ∆.

Therefore, the adaptation of any zip-trader market is determined by eight real-valued param-
eters: the 3 pairs of bounds on the distribution of parameters for the individual agents (i.e.,
βb, β∆, γb, γ∆, µb, and µ∆), and the two parameters cr and ca that define the distributions of stochas-
tic perturbations used in calculating each trader’s target price. Clearly, any particular choice of
values for these eight parameters can be represented as a vector V :

V = [βb, β∆, γb, γ∆, µb, µ∆, cr, ca] ∈ �8

which corresponds to a single point in the 8-dimensional space of possible parameter values.
In previous publications, Cliff & Bruten demonstrated the effectiveness of the zip adaptation

strategy in a variety of cda markets [10, 14, 12] and also in simple one-sided auction models of
retail markets [15]. In these publications, the dynamics of markets populated by zip traders were
explored using various simple experimental supply and demand curves similar to those used by
Smith [42] or Gode & Sunder [23]. Cliff & Bruten [10, 12] presented results illustrating zip traders
operating successfully in cda markets where Gode & Sunder’s [23] zero-intelligence traders fail.
These examples include markets where there are asymmetric supply and demand functions and
imbalances between the number of buyers and sellers. Cliff & Bruten [10, 16] also showed that zip-
trader markets can respond well to shock changes in supply and demand and that they can operate
successfully in non-cda markets, such as experimental ‘retail’ markets. Thus, in experimental
markets such as those used by Smith or Gode & Sunder, the results from zip traders are very
similar to those from Smith’s [42] human subjects: a point explored in detail in [10]. Although
Cliff & Bruten varied the details of the market environments, in all of their experiments the same
vector of parameter values was used, denoted here by Vcb:

Vcb = [0.10, 0.40, 0.00, 0.10, 0.05, 0.30, 0.05, 0.05]

The values of the elements of Vcb were chosen using “educated guesses” followed by some trial-and-
error experimentation to fine-tune the performance.

To demonstrate the typical performance of a cda market of zip traders operating with parame-
ters set by Vcb, Fig. 1 shows market supply and demand for 22 zip traders: there are 11 buyers and

3The b subscript in βb, γb, and µb denotes the baseline value.
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11 sellers, each with the right to engage in one transaction. The limit prices for both the buyers
and the sellers range from $0.75 to $3.25 in steps of $0.25: the supply and demand curves induced
by this distribution of limit prices intersects at an equilibrium price of $2.00. Fig. 2 shows the
transaction-price time series for one cda experiment in the market of Fig. 1. The experiment lasts
for six trading periods or ‘days’. Initial transaction prices occur at off-equilibrium prices but there
is clear convergence to equilibrium over the course of this experiment. This convergence is quanti-
fied in Fig. 3, where summary statistics for zip performance in the market of Fig. 1 are shown: in
each experiment, Smith’s [42] α measure of convergence4 is calculated for each day; Fig. 3 shows
the mean and standard deviation of α in each day over 50 such experiments.
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50

100

150

200

250

300

350

400

Quantity

D

S

Figure 1: Market supply curve S and demand curve D, for 11 buyers and 11 sellers. Vertical axis is price ($0.50 to
$4.00); equilibrium price is $2.00.

In developing and testing the zip traders, values for the elements of Vcb that gave good market
performance were chosen by hand. This manual process is potentially labor-intensive: it is possible
that many combinations of parameter values need to be evaluated for any given market situation
before a satisfactory set of values is discovered. Furthermore, whenever the market alters, this
hand-optimization process may need to be repeated. Feasible alterations to the market include
significant shifts in the supply and demand curves, or changes in the number of buyers or sellers
in the market. Thus, it would be highly desirable if the zip parameter-optimization process could
be automated. There are many possible optimization techniques that could be employed. In
the next section, results from the first attempt at optimizing via a genetic algorithm (ga) are
described. Gas have been used for parameter optimization in a wide variety of problem domains
[25]. The usage described below is reminiscent of some work in evolving parameters affecting back-
propagation learning in artificial neural networks (e.g., [37, 2]), but the only connection between zip

4Smith’s α measure of convergence for a trading period is given by σ0/P0 where P0 is the theoretical equilibrium
price and σ0 is the root mean square of the difference between the transaction prices and P0 during that trading
period.
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Figure 2: Transaction-price time series from one
6-day CDA market experiment with parameters
set by Vcb. Vertical axis is price ($0.00 to $3.25);
horizontal axis is day. Horizontal line indicates
equilibrium price of $2.00.
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Figure 3: Mean (solid line) plus and minus one
standard deviation (dashed lines) of α in each day
over 50 6-day CDA market experiments with pa-
rameters set by Vcb. Vertical axis is Smith’s α (0
to 45); horizontal axis is day.

traders and back-propagation networks is that both are based on use of the Widrow-Hoff learning
rule with momentum. Future work is planned to explore alternative optimization strategies and
compare their results with the ga approach described here.

3 Evolutionary Optimization

A standard ga (e.g. [25]) was used to optimize the parameters. An initial population of 30 ‘individ-
uals’ was randomly created, where each individual was a ‘genotype’ consisting of the 8 real values
of a V vector. Each individual genotype Vi was evaluated by monitoring the market dynamics of
groups of zip traders with parameters set by Vi, and the result of this monitoring was used to assign
Vi a ‘fitness’ score. Once the fitness of all individuals had been evaluated, a new population of 30
was created via ‘reproduction’ where a selection process ensured that fitter individuals were more
likely to reproduce. The old population would then be discarded and the new population would
be evaluated to assign fitnesses that determine likelihood of reproduction. Each cycle of evaluating
the current population and ‘breeding’ a new population from the fitter individuals is referred to as
one ‘generation’. In all the experiments discussed below, the ga was ended after 200 generations.

For each new individual that was created in the breeding phase, a simple rank-based tournament
selection process was used: three distinct individuals were randomly selected from the old (evalu-
ated) population, and the fittest two of these were identified as the ‘parents’ of the new individual.
Let Vmom denote the fitter of the two parents and let Vdad denote the other parent. Also, let Vkid

denote the new individual. The ‘breeding’ process started by copying the value of the first element
of Vmom into the first element of Vkid. A uniform random value x ∈ [0.0, 1.0] was then generated.
If x was less than some threshold Tx then the copying process ‘crossed-over’ so that the next el-
ement of Vkid would be copied from Vdad; otherwise, copying continued from Vmom. This process
of copying from the current parent and then crossing-over to the other parent with probability Tx

was repeated at each of the eight elements. Thus, it is possible that Vkid is an asexual copy of
Vmom, or that the values of the elements of Vkid are a sexual mix of the ‘genetic material’ of the
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two parents. Clearly, the number of cross-overs from one parent to the other in the copying process
follows a Poisson distribution dependent on Tx. This so-called stochastic multi-point crossover is
a standard practice in ga applications. In all the experiments reported here, Tx = 0.125. When
each element was copied from a parent to its child, the value on the element was also ‘mutated’ by
adding a random real value generated from U(−0.05, +0.05), and clipping at 0.0 and 1.0 to ensure
that Vi ∈ [0, 1]8.

The standard practice of elitism was also employed: on each generation, one unadulterated copy
of the best individual in the old population was copied into the new population, thereby helping
ensure that the best individual found so far is always retained. However, because the overall zip-
trader market is stochastic, the fitness evaluation process is nondeterministic, and hence if the
same population was to be evaluated twice, there is no guarantee that the same individual would
be identified as the elite both times.

The ‘fitness’ for each individual Vi genotype was calculated by monitoring price convergence in
a series of 50 cda market experiments, all with the supply and demand curves shown in Fig. 1.
At the start of each experiment the parameter values represented on Vi were used to generate the
βi, γi, and µi(0) values for the 22 zip traders. The values of cr and ca used in calculating the
traders’ target prices in each experiment were also taken from Vi. Each market experiment lasted
for six trading ‘days’. At the end of each day d, Smith’s α measure would be calculated and is
denoted here by α(d). The score for Vi on experiment number e, denoted by S(Vi, e), was given
by a weighted sum of the six α(d) values: let wd denote the weight on day d. In the experiments
reported here, w1 = 1.75, w2 = 1.5, w3 = 1.25, and w4, w5, and w6 were all equal to 1.0. These
weights place a greater emphasis on the early trading days, when the zip traders are undergoing
their initial adaptation to the market. The ‘fitness’ evaluation function for Vi, denoted F (Vi) was
then calculated as the arithmetic mean of S(Vi, e) over n=50 experiments:

F (Vi) =
1
n

n∑

e=1

S(Vi, e) =
1
n

n∑

e=1

1
6

6∑

d=1

wdα(d)

Note that, because lower values of α correspond to better transaction-price convergence, lower
values of F are more ‘fit’, and an optimal score is F (Vi) = 0.0. Thus the intention of the ga is to
minimize this measure (i.e., the closer an individual’s score is to 0.0, the more ‘fit’ it is).

Before results are shown, one more detail needs to be discussed: the choice of bounds on the
distributions that generate the initial random population of Vi individuals. These determine the
initial conditions of the evolutionary search, and thus could have a significant effect on the success
of the search.5 In the following section, results will be shown from experiments where the initial
conditions are classified into three types:

• Easy: Vi = Vcb;∀i.

• Zero: Vi = [0, 0, 0, 0, 0, 0, 0, 0];∀i.

• Hard: Vi ∈ [0.75,U∆, 0.75,U∆, 0.75,U∆,Uc,Uc];∀i
where U∆ = U(0.00, 0.25) and Uc = U(0.75, 1.00).

The ‘easy’ type can be viewed as a test of whether the evolutionary optimization process can
find improvements on the fitness of Vcb: effectively, the ‘easy’ experiments explore the possibility

5The values of any element of V in the initial population can be constrained to some constant c by generating
them from U(c, c).
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that, with further trial-and-error settings of the parameters, even better performance could be
obtained from the zip traders.

The ‘zero’ experiments can be viewed as a test of whether the evolutionary process can find
good sets of parameters from initial conditions that are intuitively suboptimal: all parameters set to
zero corresponds to having no adaptation at all in the markets; yet having some adaptation seems
intuitively to be a better approach – the ga offers a less subjective test of this belief. Thus, the
‘zero’ experiments can be characterized as a test of the hypothesis that some learning or adaptation
is better than none at all.

However, it is clear that Vcb is quite close to an all-zero vector (in terms of Euclidian distance at
least). So, starting with a population of all-zero vectors may not present much of a challenge to the
search process. For this reason, the ‘hard’ experiments commence with a set of parameter values
that are all very much higher than would be chosen on the basis of intuition or experience. Having
high learning rates, high momentum coefficients, high initial profit margins, and large perturbations
when computing the target price, are all likely to give rise to poor market dynamics. But, it is not
clear a priori that the evolutionary process will be able to guide the population from this area of
parameter space with poor dynamics to one that gives better dynamics: the possibility that the
system will be trapped in local minima cannot be ruled out.

Illustrative end-results from these three types of evolutionary optimization experiment are pre-
sented in the next section. Following that, the evolutionary trajectories of the population through
parameter space are discussed.

4 End-Results

Fig. 4 shows results from one ‘easy’ experiment: it is a log-log plot of the fitnesses of the 30
individuals in the population at each of the 200 generations. As can be seen, there is an initial
small but significant increase in performance: the elite score falls from 7.276 in the initial population
down to about 80% of that initial elite score by generation 50, from which point onwards no
significant improvement in scores is discernible. In the last 20 generations of this experiment the
lowest elite score is 5.289, the highest is 6.549, the mean is 6.092 and the standard deviation is
0.312. Fig. 5 shows a time-series of transaction-prices from the elite individual in generation 200,
and Fig. 6 shows a summary of the α values from 50 such experiments. These results should be
compared to those shown in Figs 2 and 3, where results from the Vcb parameter set (as used in
the initial generation of the ‘easy’ experiments) are illustrated. While the α(1) values are similar,
the generation-200 individual has better values for α(d > 1). Thus, the evolutionary search has
discovered parameter settings that give better convergence dynamics than those given by Vcb in the
market of Fig. 1. The final elite individual in this experiment has the vector Veasy:

Veasy = [0.438, 0.456, 0.095, 0.171, 0.209, 0.187, 0.000, 0.071]

To give an indication of how representative this is of the elites in the final 20 generations of the
experiment, let Veasy:µ denote the vector of arithmetic means of the elements of the last 20 elite
genotypes, and let Veasy:σ denote the corresponding standard deviations. These vectors are:

Veasy:µ = [0.487, 0.343, 0.073, 0.141, 0.161, 0.158, 0.006, 0.050]

Veasy:σ = [0.056, 0.056, 0.040, 0.064, 0.036, 0.046, 0.009, 0.023]
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Figure 4: Log-log plot of the fitness (vertical axis; range is [0,50]) of each of the 30 individuals in the population
for one experiment over 200 generations (horizontal axis) from ‘easy’ initial conditions.
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Figure 5: Transaction-price time series from one
experiment with the elite individual in the final
generation from ‘easy’ initial conditions. Axis
ranges same as in Fig. 2.
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Figure 6: Mean and standard deviation of α in
each day over 50 experiments for the elite indi-
vidual in the final generation from ‘easy’ initial
conditions. Axis ranges same as in Fig. 3.
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Fig. 7 shows the population fitnesses in one ‘zero’ experiment, using the same format as Fig. 4.
Again, most of the improvement in F scores comes over the first 50 generations, but the improve-
ment is much more dramatic in this case: the best F value in the initial population is 44.236,
confirming the intuitive assumption that some adaptation is (much) better than no adaptation at
all. The performance of members of the initial population is illustrated in the transaction-price
time series of Fig. 8 and the α(d) statistics of Fig. 9. The corresponding time-series and α(d) data
for the elite individual after 200 generations are shown in Figs 10 and 11. In the last 20 generations
of this experiment, the lowest elite score was 5.345, the highest was 6.223, the mean was 5.916, and
the standard deviation was 0.218. The final elite individual has the vector Vzero:

Vzero = [0.621, 0.000, 0.001, 0.277, 0.214, 0.063, 0.031, 0.010]

and the mean Vzero:µ and standard deviation Vzero:σ vectors for the elites of the final 20 generations
are:

Vzero:µ = [0.539, 0.026, 0.049, 0.339, 0.204, 0.053, 0.014, 0.047]

Vzero:σ = [0.066, 0.021, 0.049, 0.090, 0.030, 0.030, 0.012, 0.032]

Fig. 12 shows the population fitnesses in one ‘hard’ experiment, using the same format as for
Figs 4 and 7. In comparison to those figures, the improvement in F scores takes much longer:
the scores do not level off until after approximately 100 generations. The performance of the elite
of the initial population is illustrated in the transaction-price time series of Fig. 13 and the α(d)
statistics of Fig. 14: this individual had a score of 21.591. The time-series and α(d) data for the
elite individual after 200 generations are shown in Figs 15 and 16. In the last 20 generations of
this experiment, the lowest elite score was 5.760, the highest was 6.637, the mean was 6.209, and
the standard deviation was 0.229. The final elite individual vector was Vhard:

Vhard = [0.361, 0.206, 0.000, 0.444, 0.191, 0.075, 0.000, 0.118]

and the mean Vhard:µ and standard deviation Vhard:σ vectors for the elites of the last 20 generations
are:

Vhard:µ = [0.462, 0.173, 0.040, 0.481, 0.178, 0.032, 0.008, 0.070]

Vhard:σ = [0.070, 0.048, 0.037, 0.043, 0.025, 0.026, 0.010, 0.033]

Comparing Figs 6, 11, and 16, it is clear that the final elite genotypes in each of the three
experiments give very similar market-convergence performance. In all three experiments, the elite
vectors (both the final elite individual, and the mean elite genotype of generations 180–200) show
regular departures from Vcb. In comparison to Vcb, all three evolved elites have values of βb much
higher than the value in Vcb, and the value of cr in all the evolved elites is very close to zero.
Yet the three experiments have not evolved to identical (or statistically indistinguishable) values.
Examining the three mean elite vectors, it is clear that while the values for βb, γb, µb, cr, and ca

are all roughly the same (within approximately one standard deviation of each other), the values
for β∆, γ∆, and µ∆ vary significantly. Yet these variations have little impact on the observable
market-convergence performance of the elites.

Naturally, the most important point to note from these results is that in all three initial-
condition cases, the simple ga can find parameter vectors that give good α convergence in the
market of Fig. 1.

Nevertheless, there are two other issues that deserve consideration. The first is that in all
three experiments the evolved value of cr was either zero or very close to zero. The implication
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Figure 7: Log-log plot of the fitness of each of the 30 individuals in the population for one experiment over 200
generations from ‘zero’ initial conditions. Axis ranges same as in Fig. 4.
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Figure 8: Transaction-price time series from
one experiment with the elite individual in the
first generation from ‘zero’ initial conditions. Axis
ranges same as in Fig. 2.
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Figure 9: Mean and standard deviation of α
in each day over 50 experiments for the elite in-
dividual in the first generation from ‘zero’ initial
conditions. Axis ranges same as in Fig. 3.
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Figure 10: Transaction-price time series from
one experiment with the elite individual in the fi-
nal generation from ‘zero’ initial conditions. Axis
ranges same as in Fig. 2.
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Figure 11: Mean and standard deviation of α
in each day over 50 experiments for the elite in-
dividual in the final generation from ‘zero’ initial
conditions. Axis ranges same as in Fig. 3.
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Figure 12: Log-log plot of the fitness of each of the 30 individuals in the population over 200 generations from
‘hard’ initial conditions. Axis ranges same as in Fig. 4.
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Figure 13: Transaction-price time series from
one experiment with the elite individual in the
first generation from ‘hard’ initial conditions.
Axis ranges same as in Fig. 2.
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Figure 14: Mean and standard deviation of α
in each day over 50 experiments for the elite in-
dividual in the first generation from ‘hard’ initial
conditions. Axis ranges same as in Fig. 3.
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Figure 15: Transaction-price time series from
one experiment with the elite individual in the fi-
nal generation from ‘hard’ initial conditions. Axis
ranges same as in Fig. 2.
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Figure 16: Mean and standard deviation of α
in each day over 50 experiments for the elite in-
dividual in the final generation from ‘hard’ initial
conditions. Axis ranges same as in Fig. 3.

of this could be that the cr parameter is ‘harmful’, in the sense that non-zero values of cr yield
less fitness than zero values, and setting cr = 0.0 has the effect of disabling relative perturbations
of the quote price q(t) when calculating the trader’s target price τi(t). Higher fitness appear to
result from having no such perturbations. Although there was a design rationale for having these
relative perturbations, the results of these three evolutionary experiments indicates that better
performance is given when the relative perturbations are prevented from occurring. If this is true,
it may only be so for the one particular market supply and demand used in these experiments
(Fig. 1): in other markets, the ‘harmful’ parameters may usefully take nonzero values, while other
parameters may be ‘harmful’. The second issue is that the variation in the final evolved values of
some of the parameters may indicate that they are ‘redundant’, in the sense that comparatively
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large variations in the values of these parameters has little impact on the performance of the system
so long as the non-redundant parameters are set to appropriate values. If this is the case, then the
variation in the evolved values of these parameters could simply be the result of the evolutionary
process allowing a ‘random walk’ through the range of values for each ‘redundant’ parameter.
The apparent variation is then simply the result of arbitrarily halting the random walk after 200
generations. More formally, the ‘redundant’ variables create a set of numerically distinct vectors
(i.e., a set of differing genotypes) that constitute a ‘plateau’ in the fitness landscape, in the sense
that differences between the members of the set are selectively neutral.

While such arguments sound plausible, it is difficult to judge their worth because, thus far, only
the end-results of the evolutionary process have been examined; and this has only been done once
for each type of initial-conditions. To gain a better understanding of how the evolutionary process
proceeds, it is necessary to explore the dynamics of the ga in more detail, performing multiple
repetitions of experiments from the same set of initial conditions. The next section presents such
an exploration. Although experiments with any of the three initial-condition types could have been
explored, the discussion here centers on the dynamics of the ‘hard’ experiments: as is clear from the
results presented above, the ‘hard’ experiments appear to take longer to converge on a solution, and
these longer transients offer the opportunity for more detailed monitoring of evolutionary dynamics.

5 Evolutionary Trajectories

Just as Figs 4, 7, and 12 show the fitness of each individual in the population over 200 generations
of evolution, so it is possible to show the values of each of the 8 elements of the genotypes for
each member of the population at each generation. Figs 17 to 24 show the 200-generation evolu-
tionary trajectory of the population through the 8-dimensional parameter space during the ‘hard’
experiment of Fig. 12.

In the discussion of Fig. 12 it was noted that the improvement in elite scores takes place over
roughly the first 100 generations, after which no further improvement is discernible and the elite
scores stabilize. Qualitatively, this is reflected in all the parameter-value trajectories: data from
the first half of the experiment in each figure shows, in most cases, significant shifts in the values
maintained by the population; in the second half, most of the values are roughly constant, or there
is drifting variation that has no effect on the elite fitness scores.

The data for γb, µb, µ∆, cr, and ca (Figs. 19 and 21 to 24 respectively) show clear stasis in the
second half of the experiment, while the data for βb, β∆, and γ∆ (Figs 17, 18, and 20 respectively) are
more reminiscent of random walks in the second half of the experiment. Certainly, the observable
changes in the population’s distribution of values for these parameters has no discernible effect on
the fitness scores of the population: thus these three variables may be considered ‘redundant’ in
the sense discussed earlier.

The data for the first 100 generations in Figs 17 to 24 shows some intriguing differences. While
the figures for µb, cr, and ca all clearly exhibit a roughly monotonic approach from the initial
conditions to the range of values that the system settles on in the second half of the experiment,
and the population’s values for µ∆ and γ∆ stay in roughly the same range as the initial conditions for
the first 100 generations, the data for βb, γb, and µ∆ all show pronounced nonmonotic trajectories.
The values for βb rapidly fall from the initial conditions around 0.75 to levels around 0.1 after 20
generations; they then increase more gradually to values around 0.5 by generation 100. The values
for γb show a similar decline to near-zero, albeit less fast (taking about 60 generations), which
is followed by about 20 generations of increase toward 0.5, a further 20 generations where the
distribution of values ‘splits’, indicating a bimodal population, before returning back toward the
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Figure 17: Values of βb (vertical axis: linear
[0.0,1.0]), for each of the 30 individuals in the
population over 200 generations (horizontal axis:
linear [0,200]).
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Figure 18: Values of β∆ (vertical axis: linear
[0.0,1.0]), for each of the 30 individuals in the
population over 200 generations (horizontal axis:
linear [0,200]).
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Figure 19: Values of γb (vertical axis: linear
[0.0,1.0]), for each of the 30 individuals in the
population over 200 generations (horizontal axis:
linear [0,200]).
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Figure 20: Values of γ∆ (vertical axis: linear
[0.0,1.0]), for each of the 30 individuals in the
population over 200 generations (horizontal axis:
linear [0,200]).

zero level. The values for µ∆ start low, but increase to around 0.4–0.6 over the first 40 generations,
falling down to 
0.1 over generations 40–60.

As was noted in [11], the trader learning rates βi appear to be a crucial parameter. Initially,
reducing the βi values has the greatest beneficial effect on fitness: βi, which essentially controls
the ‘gain’ in the zip adaptation process, is set at such a highly suboptimal value that zip-trader
adaptation causes more problems than it solves. Hence greater fitness is found in genotypes that
‘turn down’ the learning rate, thereby reducing these ill effects. More formally: initially, with all
parameters having high values, there is a negative correlation between fitness and learning rates βi.

However, once the distribution of βi values is sufficiently low, the effects on fitness of variations
in other parameters becomes more pronounced. This is seen most clearly in Fig. 21, where there is a
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Figure 21: Values of µb (vertical axis: linear
[0.0,1.0]), for each of the 30 individuals in the
population over 200 generations (horizontal axis:
linear [0,200]).
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Figure 22: Values of µ∆ (vertical axis: linear
[0.0,1.0]), for each of the 30 individuals in the
population over 200 generations (horizontal axis:
linear [0,200]).
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Figure 23: Values of cr (vertical axis: linear
[0.0,1.0]), for each of the 30 individuals in the
population over 200 generations (horizontal axis:
linear [0,200]).
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Figure 24: Values of ca (vertical axis: linear
[0.0,1.0]), for each of the 30 individuals in the
population over 200 generations (horizontal axis:
linear [0,200]).

sharp downwards shift, almost a jump discontinuity, in the population distribution of values for µb.
This occurs around generations 25–30, i.e. shortly after the population values of βb have stabilized at
low values. Similar interactions between variables occur subsequently in the evolutionary process.
As the values of all the variables evolve into ranges that yield effective market-adaptation in the
traders, so traders with higher learning rates will adapt even faster, and so thus the initial negative
correlation between βi and fitness is reversed : now genotypes coding for higher distributions of βi

are likely to yield higher fitness, so there is a positive correlation. The data for βb over generations
60–120 clearly shows the population evolving into regions of parameter space with higher βb values.

Although Figs 17 to 24 faithfully illustrate the evolutionary trajectory of the population through
the 8-d parameter space, they obscure the evolutionary trajectory of the parameter values encoded
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on the elite genotype. While it would be informative to present another sequence of graphs, one
for each of the eight parameters, showing the values on the elite genotype at each generation, it is
possible to represent such data in a more compact form. Because the parameters βb, β∆, γb, γ∆, µb,
and µ∆ are bounds in a 3-d (βi, γi, µ(0)i) space, the values of these six parameters define a rect-
angular solid subspace or ‘box’ in the 3-d (βi, γi, µ(0)i) space: the values of βb, γb, and µb define
one corner of a box, while the values of β∆, γ∆, and µ∆ define the width, depth, and height of the
box. Thus, for any one genotype, the first six parameters on a Vi genotype can be visualized as a
box in 3-space. Figure 25 shows one (βi, γi, µ(0)i) box for the elite genotype in the population at
each generation in the ‘hard’ experiment illustrated in Fig. 12. The evolutionary trajectory of the
elite parameter values is fairly clear from comparing Fig. 25 to the data in Figs 17 to 24 (and even
clearer when watching animations of the development of Fig 25).

Figure 25: Evolutionary trajectory of elite genotype ‘boxes’ over 200 generations through (βi, γi, µ(0)i) space from
‘hard’ initial conditions. Boxes for individuals from earlier generations have lighter-shaded top-surfaces.

The discussion so far has established that the evolutionary trajectories of the population through
parameter space can be visualized and that the vizualizations can inform on the interactions be-
tween the variables. The evolutionary trajectory can be monitored using quantitative techniques
such as those recently developed by Mayley [35]. This can help establish when variation in elite
parameter values is significant, and when it is the result of random drift. However, the discussion
has concentrated on analyzing the trajectory given by one experiment. A natural question to ask is
how representative this one experiment is. Determining the answer to that question requires data
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from multiple experiments where the initial conditions are identical and the only source of variation
is in the (pseudo-)random processes governing generation of the initial population, and subsequent
selection, crossover, and mutation. To explore this issue, 15 additional ‘hard’ experiments were
run, differing only in the initial seed used by the random-number generator.

Fig. 26 shows the elite fitness scores from all 16 ‘hard’ experiments, and clearly illustrates a
bimodality in the results: although twelve of the sixteen experiments settled to give elite fitnesses
near 6.0, the remaining four experiments settled with elite fitnesses around 8.0. The occurrence of
‘bad’ populations indicates the presence of local minima in the search space. More precisely, the
average score of the last 20 elite individuals in the sixteen ‘good’ experiments was 6.066 and the
standard deviation was 0.265 (N=12×20=240). The average score of the last 20 elite individuals in
the four ‘bad’ experiments was 7.898, with a standard deviation of 0.260 (N=4×20=80). Let Vhg:µ

represent the mean parameter vector from the N=240 ‘good’ elite individuals, and Vhg:σ represent
the corresponding standard deviations; similarly let Vhb:µ and Vhb:µ represent the same statistics
for the N=80 ‘bad’ elite individuals. The elements of the vectors are:

Vhg:µ = [0.543, 0.119, 0.177, 0.155, 0.177, 0.079, 0.010, 0.057]

Vhg:σ = [0.110, 0.100, 0.107, 0.140, 0.046, 0.066, 0.013, 0.030]

Vhb:µ = [0.125, 0.021, 0.210, 0.247, 0.991, 0.982, 0.019, 0.905]

Vhb:σ = [0.023, 0.027, 0.122, 0.168, 0.015, 0.021, 0.028, 0.076]
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Figure 26: Scores of elite genotype over 200 generations in each of 16 ‘hard’ experiments. Axis ranges same as in
Fig. 4.

The primary differences between Vhg:µ and Vhb:µ are in the values of βb, β∆, µb, µ∆, and ca.
Examining the evolutionary history of these differences shows that the ‘bad’ results occur when
the population of parameter values follows a monotonic path through the parameter space. For
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Figure 27: Values of µb for a ‘bad’ population.
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Figure 28: Values of ca for a ‘bad’ population.

comparison, Figs 27 and 28 show the evolutionary trajectories of the population’s values for µb and
ca in one of the ‘hard’ experiments that gave ‘bad’ results. In both cases, the first 20–40 generations
do not appear significantly different from the corresponding ‘good’ data shown in Figs 21 and 24.
However, the sudden drop in parameter values seen around generation 40 in the ‘good’ population
does not occur in the ‘bad’ data. Fig. 29 shows the trajectory for the elite genotype ‘boxes’ in this
‘bad’ population. The early stages of this ‘bad’ trajectory are similar to those of the ‘good’ one
shown in Fig. 25: both trajectories show a reduction in β values. However, the ‘bad’ population
continues to remain in a region of very high µ and fairly high γ, rather than dropping down to the
zone of low-µ low-γ where subsequent increases in β are possible. Colloquially, the problem with
the ‘bad’ trajectory is not so much that it “takes a wrong turning” but rather that it fails to take
the turning at all.

Finally, two notes of caution. First, note that care should be taken when discussing average
genotypes such as Vhg:µ and Vhb:µ: there is no guarantee that the average score of a set of geno-
types accurately reflects the score of the average genotype. For example, if all elite genotypes are
distributed evenly on the surface of a hypersphere, the average elite genotype will be at the origin
of the hypersphere, where fitness may be very different.

Second, note that the ‘easy’, ‘zero’, and ‘hard’ initial-condition vector spaces were chosen for the
reasons given in Section 3 (namely: to test whether the GA could improve on the hand-optimized
Vcb values; to test whether any adaptation is better than none at all; and to test whether the GA can
find good parameter-sets from manifestly poor start-conditions). A truly naive approach, ignoring
the intended use of the parameter values, would be to randomly scatter the initial population
throughout the parameter space. That is, to use initial vectors Vi ∈ U(0, 1)8 ∈ �8;∀i. If the
population is sufficiently large, then it is likely that at least one individual in the initial ‘naive’
population will be close to (or actually within) the zone of parameter space that the successful
‘easy’, ‘zero’ and ‘hard’ populations converge to. As the elite individual is always preserved into
the next generation, the ‘naive’ experiment would reduce to watching material from the initial elite
genotype spread through the population. This is of little explanatory interest, and so such results
have not been presented here.
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Figure 29: Evolutionary trajectory of elite genotype ‘boxes’ for a ‘bad’ population starting with ‘hard’ initial
conditions.

6 Conclusion

This paper has demonstrated the use of a genetic algorithm in parameter-optimization for zip

traders in a single cda market with a fixed supply and demand schedule. The results indicate that
the approach has merit.

Current research is directed at testing the capabilities of zip traders in more realistic and
challenging environments, and extending them to the point where they can be used in market
environments where time is continuous, trading is asynchronous, market supply and demand are
dynamic, and information propagates with uncertainty and delays. For zip traders to operate
in such environments, it is likely that additional parameters will have to be introduced. While
manual optimization of low-dimensional parameter spaces such as the 8-dimensional space discussed
here can be relatively straightforward, it is likely that manual techniques will grow unwieldy or
impracticable as the number of parameters or dimensions increases. In such situations, automatic
optimization is a highly desirable alternative, and the preliminary results presented here indicate
that genetic algorithms are a promising approach.

The results presented here are for a simple fixed-demand, fixed-supply, discrete-time, single-
commodity, unit-volume-per-transaction cda market system, but by experimenting with simple
systems such as this, likely difficulties can be revealed and possible solutions explored, with rela-
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tively low costs in terms of computer time required to evaluate alternative approaches, and increased
ease of analysis. Results from this simple test-bed indicate that more complex artificial-trader sys-
tems (with tens, hundreds, or thousands of parameters) can be constructed with an increased
reliance on (semi-)automatic optimization techniques.
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